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Alpha-ketoglutarate (AKG) is a crucial intermediate of the Krebs cycle and plays a critical role in multiple metabolic processes
in animals and humans. Of note, AKG contributes to the oxidation of nutrients (i.e., amino acids, glucose, fatty acids) and then
provides energy for cell processes. As a precursor of glutamate and glutamine, AKG acts as an antioxidant agent as it directly reacts
with hydrogen peroxide with formation of succinate, water, and carbon dioxide; meanwhile, it discharges plenty of ATP by oxidative
decarboxylation. Recent studies also show that AKG has alleviative effect on oxidative stress as a source of energy and an antioxidant
in mammalian cells. In this review, we highlight recent advances in the antioxidative function of AKG and its applications in animals

and humans.

1. Introduction

Reactive oxygen species (ROS) are oxygen-containing chem-
ical species including superoxide anion, hydrogen peroxide
(H,0,), and hydroxyl radicals, and most of which are
produced by mitochondria and nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases [1]. Of note, excess of
ROS could lead to oxidative stress in cells. Oxidative stress
is associated with the disorder of proteins, lipid oxidation,
and nucleic acid breaks, which may further impair cellular
physiological functions. Numerous studies suggested that
oxidative stress may result in some pathogenic diseases, such
as cancer [2], neurological disorders [3], age-related diseases
[4], atherosclerosis [5], inflammation [6], and cardiovascular
diseases [7]. Mammals have evolved a series of antioxidant
defenses to protect vital biomolecules from oxidative damage.
On the one hand, antioxidant agents, such as antioxidant
enzymes like superoxide dismutase (SOD), catalase (CAT),
and glutathione peroxidase (GSH-Px), or nonenzymatic
agents, such as glutathione (GSH), vitamin C, and vitamin
E, can clean off most of ROS [8]. On the other hand, the
excess ROS can also activate many signaling pathways such as

mitogen-activated protein kinase (MAPKs), NF-erythroid 2-
related factor/antioxidant response element (Nrf2/ARE), and
peroxisome proliferator-activated receptor y (PPARYy), which
play a vital role in cellular redox homeostasis and contribute
to antioxidative defense [9].

Glutamate, as a precursor of GSH, exerts alleviative effects
on oxidative stress in medicine and surgery [10]. AKG, as
a precursor of glutamine, is cheaper and more stable than
glutamine and acts as an antioxidant instead of glutamine
in many cellular processes. Many reports demonstrated
that AKG can be converted into glutamine by glutamate
dehydrogenase (GDH) and glutamine synthetase (GS), which
is a sign of antioxidative function. It is evident that AKG could
improve antioxidative capacity by promoting glutamine con-
tent and antioxidative systems [11, 12]. Additionally, Chen
et al. showed that AKG could significantly improve SOD
activity but reduce malondialdehyde (MDA) level, suggesting
an improvement of intestinal antioxidative capacity [13].
Recently, more and more studies indicated that AKG could
improve antioxidative function against oxidative imbalance
in cells, which further contributed to the prevention and
treatment of various diseases induced by oxidative stress.


http://orcid.org/0000-0001-9365-0026
http://orcid.org/0000-0001-5251-4116
https://doi.org/10.1155/2018/3408467

Acetyl-CoA

Oxalocetate

Citrate
Krebs cycle
Fumarate NH; + NADH + H* NAD"*
sucqnyl.u KG Glutamate dehydrogenase

BioMed Research International

NH; + ATP ADP + Pi

Glutamate Glutamine

Glutamine synthetase

FIGURE 1: The conversion of AKG into glutamate and glutamine.
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FIGURE 2: Nonenzymatic oxidative decarboxylation of AKG in hydrogen peroxide decomposition.

Therefore, in this review, we aim to summarize the recent
advances of the antioxidative function of AKG and its
applications.

2. Biochemical Characteristics of AKG

AKG is a weak acid containing two carboxyl groups and
a ketone group which is also called 2-ketoglutaric acid
or 2-oxoglutaric acid. AKG possesses many physiological
functions. On the one hand, AKG could react with ammonia
and then be converted into glutamate; subsequently, the glu-
tamate further reacts with ammonia and generates glutamine
(Figure 1). On the other hand, AKG reacts with H,O, as a
result of the conversion of succinate, carbon dioxide (CO,),
and water (H,O), eventually achieving elimination of H,O,
(Figure 2) [14]. Additionally, AKG could produce plenty of
ATP in the TCA cycle and provide energy for intestinal
cell processes. Furthermore, AKG performs positive effects
on oxidative stress damage in intestinal mucosal cells and
contributes to cell redox homeostasis [15]. It has been
reported that enteral AKG was oxidized and used by intestinal
mucosa, thereby, as an energy donor and antioxidant agent
via the TCA cycle. Apart from the above, AKG also exerts
antioxidative defense by enzymatic systems and nonenzy-
matic oxidative decarboxylation.

3. Antioxidative Function of AKG

3.1. Antioxidants Activities. The balance between oxidants
and antioxidants plays an important role in physiological
functions in cells and biomolecules. Antioxidant system com-
prises enzymatic and nonenzymatic agents. Antioxidative
enzymes include SOD, CAT, GSH-Px, and nonenzymatic
agents include GSH, vitamin C, vitamin E [10]. AKG is
an antioxidant substance which exhibits a vital role in
scavenging ROS in organism [16]. Growing studies suggest
that AKG serves as a natural antidote of scavenging ammonia
by exerting its antioxidative capacity. It has been reported
that AKG inhalation showed a protective role in ammonia-
induced lung damage in rats [17]. The mechanism may
be caused by reducing the levels of lactate dehydrogenase

(LDH) and MDA and improving the activities of SOD and
CAT and GSH level. Lipid peroxidation is susceptible to
ammonia or trauma like burns and eventually produces MDA
resulting in membrane injury and even cell apoptosis, while
antioxidants such as SOD and GSH-Px are beneficial to
prevent the lipid peroxidation and injury [18]. AKG could
prevent the lipid peroxidation by increasing SOD, GSH-
Px, and CAT activities to facilitate fat metabolism, and
then alleviate ethanol-induced hepatotoxicity and hyper-
ammonemia induced by ammonium acetate in rats [19,
20]. Similarly, AKG also performs chemopreventive role
in hepatocarcinogenesis induced by N-nitrosodiethylamine
(NDEA) in rats by modulating the levels of antioxidants
and lipid peroxide to access normal levels [21]. Furthermore,
AKG shows high resistance to ammonia-N stress in hybrid
sturgeons as it enhances antioxidant enzymes activity and
HSP 70 and HSP 90 gene expression [22]. Besides, cyanide-
induced oxidative stress could lead to neurotoxicity, the lipid
peroxidation, and dysfunction of membrane especially in
brain and kidney of animals like rats [23]. And cyanide is
evident to inhibit antioxidative defense such as reducing SOD
activity and GSH level [24]. Interestingly, AKG is considered
as a natural antagonist of cyanide poisoning because of
its chemical structure that is able to bind with cyanide to
produce cyanohydrin and further prevent cyanide poisoning
or cyanide lethality [25, 26]. In rat in vitro and vivo models,
AKG reduces GSH depletion and DNA damage induced by
cyanide [27]. Furthermore, studies demonstrate that AKG
alone could prevent brain and liver from cyanide-induced
oxidative damage by increasing GSH, SOD, and GSH-Px
levels and reducing MDA level in rats, especially when
combined with sodium thiosulfate [28, 29]. Additionally, a
recent study indicates that AKG could enhance freeze-thaw
tolerance and prevent cell death induced by carbohydrate
stress in yeast, and the protective pathway may be involved
in the enhanced antioxidant defense [30].

3.2. Nonenzymatic Oxidative Decarboxylation in H,0, De-
composition. In regard of antioxidative defense, some studies
show that AKG exerts its function by other redox regulatory
mechanisms rather than antioxidant activities. A number of
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studies demonstrate that AKG acts as a source of energy and
antioxidant agent on improving physiological metabolism
and scavenging ROS to alleviate oxidative stress via nonen-
zymatic oxidative decarboxylation in H,O, decomposition.
Hydrogen peroxide, one of ROS, is a weak oxidant and
cytotoxic and easily causes oxidative stress injury in cells such
as cell membrane damage and DNA alterations [31]. Indeed,
pyruvate and a-ketoacids exhibit protective effects on H,0,-
induced toxicity in vivo and vitro and can cross the blood-
brain barrier and scavenge H,O,, which provide a novel
therapeutic mode against H,O,-induced brain pathologies.
The mechanism may be due to the nonenzymatic oxidative
decarboxylation in which ketone group in «-carbon atom
is combined with H,O, to form corresponding carboxylic
acid, CO,, and H,0. AKG serves as a key intermediate in
the TCA cycle and participates in nonenzymatic oxidative
decarboxylation in the H,0O, decomposition. It has been
demonstrated that AKG significantly elevated antioxidative
capacity by decreasing the level of H,0, in the liver and
intestinal mucosa of ducks [32]. Also, AKG performs a
protective role in intestinal cells damage induced by H,O,
through mitochondria pathway [33]. Similarly, the protective
action of AKG is noticed in alleviating toxic effects of H,O, in
Drosophila melanogaster, other animals, and humans, which
provides a strong evidence for the H,0,-scavenging ability
of AKG [34]. Thus, AKG can be used as a potent scavenger in
nonenzymatic oxidative decarboxylation in H,0, decompo-
sition.

4. The Applications of AKG in
Animals and Humans

AKG has been widely used in animals and humans as a
feed additive and medicine. In animal industry, AKG could
effectively improve growth performance, nitrogen utilization,
immunity, bone development, intestinal mucosal injury, and
oxidative system [35-39]. In humans, AKG is extensively
used in trauma, aged diseases, postoperative recovery, and
other nutritional diseases [40]. In terms of antioxidative
function, AKG exhibits a crucial role in multiple diseases
involved in aging, cancer, cardiovascular diseases, and neu-
rological diseases. It has been reported that AKG developed
its antioxidant capacity to fight against ethanol toxicity
and enhance cold tolerance in the model of Drosophila,
which provided an effective therapy against ethanol and
alcohol poisoning in animals and humans [41, 42]. Similar
protective effect is noticed in lipopolysaccharide-induced
liver injury in which AKG provides a new intervention to
alleviate liver damage in young pigs [43]. AKG also maintains
redox state stabilization for antioxidant defense. Indeed, AKG
oxidation plays a beneficial role in maintaining the levels
of reductive carboxylation to handle mitochondrial defects
in cancer cells [44]. Besides, oral administration of AKG
improves blood vessel elasticity by exerting its antioxidant
in aging organisms [45]. Additionally, AKG could facilitate
the rate of GSH synthesis in human erythrocytes [46]. AKG
has been identified to effectively decrease the incidence of
cataracts induced by sodium selenite in rat and acted as
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FiGure 3: The antioxidative function of AKG and its applications.
®: antioxidative enzymes activites; : nonenzymatic oxidative
decarboxylation in hydrogen peroxide decomposition.

a scavenger of ROS [47]. Moreover, AKG functions as a
neuroprotective agent in ischemic pathology of hippocam-
pus [48]. Furthermore, a novel study demonstrates that
AKG could regulate organismal lifespan and prevent age-
related diseases by regulating cellular energy metabolism
[49]. Interestingly, apart from antioxidative function, AKG is
characterized by prooxidative property which can generate
active complexes with iron in rat brain homogenates [50,
51]. Under mild oxidative stress, it results in activating
antioxidant system of AKG, thus displaying its protective
effects such as strengthening resistance of the yeast cells to
oxidative stress [52].

5. Summary and Perspective

AKG serves as a pivotal intermediate and is widely applied
in animals and humans. Particularly, AKG primarily exerts
its antioxidative function by the following: (1) enhancing
antioxidative enzymes activities and nonenzymatic agent
levels against oxidative stress and lipid peroxidation, espe-
cially in intervention of ammonia and cyanide poisoning;
(2) participating in nonenzymatic oxidative decarboxyla-
tion in H,O, decomposition to scavenge ROS and protect
organism from various ROS-induced diseases. And AKG
provides a promising therapeutic intervention for clinical
diseases in animals and humans (Figure 3). Besides the
above antioxidative pathways, Nrf2/ARE is an important
regulator of antioxidative process that aids to keep redox
homeostasis, and it has been proved to perform a vital role in
various diseases (i.e., liver injury, traumatic brain injury, and
inflammation) induced by oxidative stress [53]. Of particular
interest, glutamine has been verified to improve the gene
expression of Nrf2 by activating Nrf2/ARE signaling pathway
to suppress ROS generation, elevate GSH levels, and prevent
apoptosis in intestine [54, 55]. However, as a precursor of
glutamine, whether AKG could directly activate Nrf2/ARE
signaling pathway to alleviate oxidative stress or not, relevant
research about that is not reported and further study is
needed.
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Abbreviations

AKG: Alpha-ketoglutarate

ROS: Reactive oxygen species

H,0,: Hydrogen peroxide

NADPH: Nicotinamide adenine dinucleotide phosphate

SOD: Superoxide dismutase

CAT: Catalase

GSH-Px:  Glutathione peroxidase

GSH: Glutathione

MAPKs:  Mitogen-activated protein kinase

Nrf2/ARE: NF-Erythroid 2-related factor/antioxidant
response element

PPARy:  Peroxisome proliferator-activated receptor y

GDH: Glutamate dehydrogenase

GS: Glutamine synthetase

MDA: Malondialdehyde

CO,: Carbon dioxide

H,0: Water

LDH: Lactate dehydrogenase

NDEA:  N-Nitrosodiethylamine.
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